Neuropathic pain develops normally in mice lacking both Nav1.7 and Nav1.8

نویسندگان

  • Mohammed A Nassar
  • Alessandra Levato
  • L Caroline Stirling
  • John N Wood
چکیده

Two voltage gated sodium channel alpha-subunits, Nav1.7 and Nav1.8, are expressed at high levels in nociceptor terminals and have been implicated in the development of inflammatory pain. Mis-expression of voltage-gated sodium channels by damaged sensory neurons has also been implicated in the development of neuropathic pain, but the role of Nav1.7 and Nav1.8 is uncertain. Here we show that deleting Nav1.7 has no effect on the development of neuropathic pain. Double knockouts of both Nav1.7 and Nav1.8 also develop normal levels of neuropathic pain, despite a lack of inflammatory pain symptoms and altered mechanical and thermal acute pain thresholds. These studies demonstrate that, in contrast to the highly significant role for Nav1.7 in determining inflammatory pain thresholds, the development of neuropathic pain does not require the presence of either Nav1.7 or Nav1.8 alone or in combination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pain without Nociceptors? Nav1.7-Independent Pain Mechanisms

Nav1.7, a peripheral neuron voltage-gated sodium channel, is essential for pain and olfaction in mice and humans. We examined the role of Nav1.7 as well as Nav1.3, Nav1.8, and Nav1.9 in different mouse models of chronic pain. Constriction-injury-dependent neuropathic pain is abolished when Nav1.7 is deleted in sensory neurons, unlike nerve-transection-related pain, which requires the deletion o...

متن کامل

Distinct Nav1.7-dependent pain sensations require different sets of sensory and sympathetic neurons

Human acute and inflammatory pain requires the expression of voltage-gated sodium channel Nav1.7 but its significance for neuropathic pain is unknown. Here we show that Nav1.7 expression in different sets of mouse sensory and sympathetic neurons underlies distinct types of pain sensation. Ablating Nav1.7 gene (SCN9A) expression in all sensory neurons using Advillin-Cre abolishes mechanical pain...

متن کامل

Effects of ranolazine on wild-type and mutant hNav1.7 channels and on DRG neuron excitability

BACKGROUND A direct role of sodium channels in pain has recently been confirmed by establishing a monogenic link between SCN9A, the gene which encodes sodium channel Nav1.7, and pain disorders in humans, with gain-of-function mutations causing severe pain syndromes, and loss-of-function mutations causing congenital indifference to pain. Expression of sodium channel Nav1.8 in DRG neurons has als...

متن کامل

Potent modulation of the voltage-gated sodium channel Nav1.7 by OD1, a toxin from the scorpion Odonthobuthus doriae.

Voltage-gated sodium channels are essential for the propagation of action potentials in nociceptive neurons. Nav1.7 is found in peripheral sensory and sympathetic neurons and involved in short-term and inflammatory pain. Nav1.8 and Nav1.3 are major players in nociception and neuropathic pain, respectively. In our effort to identify isoform-specific and high-affinity ligands for these channels, ...

متن کامل

Endogenous opioids contribute to insensitivity to pain in humans and mice lacking sodium channel Nav1.7

Loss-of-function mutations in the SCN9A gene encoding voltage-gated sodium channel Nav1.7 cause congenital insensitivity to pain in humans and mice. Surprisingly, many potent selective antagonists of Nav1.7 are weak analgesics. We investigated whether Nav1.7, as well as contributing to electrical signalling, may have additional functions. Here we report that Nav1.7 deletion has profound effects...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular Pain

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2005